SM CUESTIONARIO U3.- TECNOLOGÍAS DURAS.
2.- Explica ampliamente los siguientes procesos: Moldeado, Troquelado, Fresado y Torneado.
R=
Moldeado: El moldeado como su nombre lo indica se refiere a dar forma a una materia en un molde. Existen diferentes tipos de moldeado:
1. Moldeado por inyección: Un émbolo o pistón de inyección se mueve rápidamente hacia adelante y hacia atrás para empujar el plástico ablandado por el calor a través del espacio existente entre las paredes del cilindro y una pieza recalentada y situada en el centro de aquél. Esta pieza central se emplea, dada la pequeña conductividad térmica de los plásticos, de forma que la superficie de calefacción del cilindro es grande y el espesor de la capa plástica calentada es pequeño. Bajo la acción combinada del calor y la presión ejercida por el pistón de inyección, el polímero es lo bastante fluido como para llegar al molde frío donde toma forma la pieza en cuestión. El polímero estará lo suficiente fluido como para llenar el molde frío. Pasado un tiempo breve dentro del molde cerrado, el plástico solidifica, el molde se abre y la pieza es removida. El ritmo de producción es muy rápido, de escasos segundos.
2. Moldeado por extrusión: En el moldeo por extrusión se utiliza un transportador de tornillo helicoidal. El polímero es transportado desde la tolva, a través de la cámara de calentamiento, hasta la boca de descarga, en una corriente continua. A partir de gránulos sólidos, el polímero emerge de la matriz de extrusión en un estado blando. Como la abertura de la boca de la matriz tiene la forma del producto que se desea obtener, el proceso es continuo. Posteriormente se corta en la medida adecuada. Extrusión de film tubular: En este proceso se funde polietileno de baja densidad. El fundido es extruído a través de una matriz anular. Se introduce aire inflando el tubo del polímero extruído para formar una burbuja del diámetro requerido, la que es enfriada por una corriente de aire. El film es arrastrado por un par de rodillos que aplastan la burbuja manteniendo así el aire empleado para inflar la burbuja dentro de ella.
3. Moldeo por insuflación del aire: Es un proceso usado para hacer formas huecas (botellas, recipientes). Un cilindro plástico de paredes delgadas es extruído y luego cortado en el largo que se desea. Luego el cilindro se coloca en un molde que se cierra sobre el polímero ablandado y le suprime su parte inferior cortándola. Una corriente de aire o vapor es insuflado por el otro extremo y expande el material hasta llenar la cavidad. El molde es enfriado para el fraguado.
4. Moldeo por vacío: Mediante este proceso se comprime una chapa de resina termoplástica ablandada por el calor contra un molde frío. La chapa toma y conserva la forma del molde. Este método se emplea para revestimientos interiores (puertas de heladeras, gabinetes, etc.)
5. Calandrado: El proceso se emplea para la fabricación de chapas y películas plásticas. Consiste en pasar un polímero convertido en una masa blanda entre una serie de rodillos calentados. A medida que el polímero pasa a través de los rodillos se forma" un producto uniforme. El último par do rodillos se ajustan para dar el espesor deseado. El sistema de rodillos de enfriamiento da a las chapas o películas su estructura molecular permanente.
Troquelado: El troquelado es la acción que ejecuta un molde " TROQUEL " cuando lo presionamos contra un material mediante una prensa. En Artes Gráficas este molde esta fabricado con unas cuchillas muy afiladas (corte) y otras formas (hendido), además de otras de tipo variado, encastadas en un soporte, normalmente de madera, que hace las veces de agrupador. El troquel consiste en: Una base de una matriz con mayor resistencia o dureza que las cuchillas o estampa de elaboración de la pieza. Las regletas cortadoras o hendedoras. Sus funciones son las siguientes: cortar, bien para perfilar la silueta exterior, bien para fabricar ventanas u orificios interiores hender, para fabricar pliegues perforar, con el fin de crear un precortado que permita un fácil rasgado semicortar, es decir, realizar un corte parcial que no llegue a traspasar la plancha . Gruesos bloques de goma que se colocan junto a las cuchillas y cuya función es la de separar por presión el recorte sobrante. Existen dos tipos básicos de troqueles: Troquel plano. Su perfil es plano y la base contra la que actúa es metálica. Su movimiento es perpendicular a la plancha consiguiendo así una gran precisión en el corte. Troquel rotativo. El troquel es cilíndrico y la base opuesta está hecha con un material flexible. Al contrario que en el troquelado plano, el movimiento es continúo y el registro de corte es de menor precisión. Ello es debido a que la incidencia de las cuchillas sobre la plancha se realiza de forma oblicua a la misma. Los embalajes fabricados en rotativo son, por tanto, aquéllos que no presentan altas exigencias estructurales tales como las Wrap Around o algunas bandejas. Por su movimiento continuo, el troquelado rotativo consigue mayores productividades en fabricación que el plano. En la industria del cartón ondulado se utilizan indistintamente ambos tipos de troquel si bien en la fabricación de cartoncillo se da el plano por sus mayores necesidades de precisión. En la industria del calzado se utiliza el troquel plano, realizado con un fleje especial de acero dispuesto perpendicularmente a la piel que descansa sobre una superficie plana. El fleje está reforzado con platinas de hierro que mantienen la perpendicularidad de éste.
Fresado: Una fresadora es una
máquina herramienta utilizada para realizar
mecanizados por arranque de
viruta mediante el movimiento de una herramienta rotativa de varios filos de corte denominada
fresa. En las fresadoras tradicionales la pieza se desplaza en el espacio acercando las zonas a mecanizar a la herramienta, permitiendo obtener formas diversas, desde superficies planas a otras más complejas. Con la incorporación del control numérico a las fresadoras estas máquinas se han convertido en las máquinas herramientas más polivalentes que existen por la cantidad de mecanizados diferentes que pueden realizar. Así mismo los progresos técnicos de diseño y calidad realizado en las herramientas de fresar, han hecho posible trabajar con parámetros de corte muy altos que conlleva a una reducción drástica de los tiempos de mecanizado.
Debido a la gran variedad de mecanizados que se pueden realizar en las fresadoras actuales, existe una amplia gama de máquinas diferenciadas tanto en su potencia como en sus características técnicas así como el número de accesorios que utilizan. La complejidad de muchas operaciones de fresado y la calidad y exactitud requerida de los mismos exige que el personal técnico que manipula fresadoras ya sea como programador, preparador u operarios tenga que tener muy buena calificación profesional.
[Las fresadoras con
control numérico por computadora (CNC) son un ejemplo de
automatización programable. Se diseñaron para adaptar las variaciones en la configuración de productos. Su principal aplicación se centra en volúmenes de producción medios de piezas sencillas y en volúmenes de producción medios y bajos de piezas complejas, permitiendo realizar mecanizados de precisión con la facilidad que representa cambiar de un modelo de pieza a otra mediante la inserción del programa correspondiente y de las nuevas herramientas que se tengan que utilizar así como el sistema de sujeción de las piezas. Utilizando el control numérico, el equipo de procesado se controla a través de un
programa que utiliza números, letras y otros símbolos. Estos números, letras y símbolos están codificados en un formato apropiado para definir un programa de instrucciones para desarrollar una tarea concreta. Cuando la tarea en cuestión cambia, se cambia el programa de instrucciones. En las grandes producciones en serie el control numérico resulta útil para la robotización de la alimentación y retirada de las piezas mecanizadas.
Las fresadoras universales modernas cuentan con dispositivos electrónicos donde se visualizan las posiciones de las herramientas y así se facilita mejor la lectura de
cotas en sus desplazamientos. Asimismo a muchas fresadoras se les incorpora un sistema de
control numérico por computadora (CNC) que permite automatizar su trabajo. También pueden incorporar un mecanismo de copiado para diferentes perfiles de mecanizado.
Existen varios lenguajes de programación CNC para fresadoras, todos ellos de programación numérica, entre los que destacan el lenguaje normalizado internacional
ISO y los lenguajes
Fagor y
Siemens. Para desarrollar un programa de CNC habitualmente se utilizan simuladores, que permiten, mediante la utilización de una
computadora, comprobar la secuencia de operaciones programadas.
La aplicación de sistemas de control numérico por computadora en las máquinas-herramienta permite aumentar la
productividad respecto a las máquinas convencionales y ha hecho posible efectuar operaciones de conformado que son imposibles de realizar con un elevado grado de precisión dimensional en máquinas convencionales, por ejemplo la realización de superficies esféricas. El uso del control numérico incide favorablemente en los costos de producción al propiciar la reducción del número de tipos de máquinas utilizadas en un taller de mecanizado, manteniendo o mejorando su calidad.
Los procesos que utilizan máquinas-herramienta de control numérico tienen un coste horario superior a los procesos que utilizan máquinas convencionales, pero inferior a los procesos que utilizan máquinas especiales, como las máquinas de transferencia (transfert). En el mismo sentido, los tiempos de preparación para un lote son mayores en una máquina de control numérico que en una máquina convencional, pues se necesita preparar la programación de control numérico de las operaciones del proceso. Sin embargo, los tiempos de operación son menores en una máquina de control numérico que en una máquina convencional, por lo cual, a partir de cierto número de piezas en un lote, el mecanizado es más económico utilizando el control numérico. Sin embargo, para lotes grandes, el proceso es más económico utilizando máquinas especiales, como las máquinas de transferencia.
3.- Define en que consiste el Prototipado Rápido de un producto y explique para que sirve.
R=
Prototipado
El prototipado modela el producto final y permite efectuar un test sobre determinados atributos del mismo sin necesidad de que está disponible. Se trata, simplemente, de testear haciendo uso del modelo. De acuerdo con las características del prototipo en cuanto a interfaz, funcionalidad, posibilidades de ampliación,... tenemos variadas posibilidades. En muchas ocasiones se dirá que Cuanto más próximo se encuentre el prototipo al producto real, mejor será la evaluación, pero veremos que esto no tiene por qué ser así.
El Prototipado Rápido es una tecnología que posibilita producir modelos y prototipos directamente a partir del modelo sólido 3D generado en el sistema CAD. Al contrario de los procesos de fabricación que sacan material de la pieza en bruto para obtener el modelo deseado, los sistemas de Prototipado Rápido generan la pieza a partir de la unión aditiva de líquidos, capa por capa, a partir de secciones transversales de la pieza obtenidas a partir del modelo 3D, las máquinas de Prototipado Rápido producen piezas en plásticos, madera, cerámica o metales. Los datos para las máquinas de Prototipazo Rápido son generados por los sistemas CAD en formato STL, que aproxima el modelo sólido por pequeños triángulos o facetas. Cuanto más pequeños sean estés triángulos, mejor la aproximación de la superficie, al coste, naturalmente, del mayor tamaño del archivo STL, y de tiempo de procesamiento. Una vez que el archivo STL es generado, las demás operaciones son ejecutadas por el propio programa que acompaña a las máquinas de Prototipado Rápido. Básicamente este programa realizara operaciones básicas.
4.- Define los conceptos CAD-CAM-CAE y explica ampliamente su interacción dentro de los procesos de manufactura modernas.
R=
CAD/CAM
Proceso en el cual se utilizan los ordenadores o computadoras para mejorar la fabricación, desarrollo y diseño de los productos. Éstos pueden fabricarse más rápido, con mayor precisión o a menor precio, con la aplicación adecuada de tecnología informática.
Los sistemas de Diseño Asistido por Ordenador (CAD, acrónimo de Computer Aided Design) pueden utilizarse para generar modelos con muchas, si no todas, de las características de un determinado producto. Estas características podrían ser el tamaño, el contorno y la forma de cada componente, almacenada como dibujos bi y tridimensionales. Una vez que estos datos dimensionales han sido introducidos y almacenados en el sistema informático, el diseñador puede manipularlos o modificar las ideas del diseño con mayor facilidad para avanzar en el desarrollo del producto. Además, pueden compartirse e integrarse las ideas combinadas de varios diseñadores, ya que es posible mover los datos dentro de redes informáticas, con lo que los diseñadores e ingenieros situados en lugares distantes entre sí pueden trabajar como un equipo.
Los sistemas CAD también permiten simular el funcionamiento de un producto. Hacen posible verificar si un circuito electrónico propuesto funcionará tal y como está previsto, si un puente será capaz de soportar las cargas pronosticadas sin peligros e incluso si una salsa de tomate fluirá adecuadamente desde un envase de nuevo diseño. Cuando los sistemas CAD se conectan a equipos de fabricación también controlados por ordenador conforman un sistema integrado CAD/CAM (CAM, acrónimo de Computer Aided Manufacturing).
La Fabricación Asistida por Ordenador ofrece significativas ventajas con respecto a los métodos más tradicionales de controlar equipos de fabricación con ordenadores en lugar de hacerlo con operadores humanos. Por lo general, los equipos CAM conllevan la eliminación de los errores del operador y la reducción de los costes de mano de obra. Sin embargo, la precisión constante y el uso óptimo previsto del equipo representan ventajas aún mayores.
Por ejemplo, las cuchillas y herramientas de corte se desgastarán más lentamente y se estropearían con menos frecuencia, lo que reduciría todavía más los costes de fabricación. Frente a este ahorro pueden aducirse los mayores costes de bienes de capital o las posibles implicaciones sociales de mantener la productividad con una reducción de la fuerza de trabajo. Los equipos CAM se basan en una serie de códigos numéricos, almacenados en archivos informáticos, para controlar las tareas de fabricación. Este Control Numérico por Computadora (CNC) se obtiene describiendo las operaciones de la máquina en términos de los códigos especiales y de la geometría de formas de los componentes, creando archivos informáticos especializados o programas de piezas. La creación de estos programas de piezas es una tarea que, en gran medida, se realiza hoy día por software informático especial que crea el vínculo entre los sistemas CAD y CAM.
Las características de los sistemas CAD/CAM son aprovechadas por los diseñadores, ingenieros y fabricantes para adaptarlas a las necesidades específicas de sus situaciones. Por ejemplo, un diseñador puede utilizar el sistema para crear rápidamente un primer prototipo y analizar la viabilidad de un producto, mientras que un fabricante quizá emplee el sistema porque es el único modo de poder fabricar con precisión un componente complejo. La gama de prestaciones que se ofrecen a los usuarios de CAD/CAM está en constante expansión. Los fabricantes de indumentaria pueden diseñar el patrón de una prenda en un sistema CAD, patrón que se sitúa de forma automática sobre la tela para reducir al máximo el derroche de material al ser cortado con una sierra o un láser CNC.
Además de la información de CAD que describe el contorno de un componente de ingeniería, es posible elegir el material más adecuado para su fabricación en la base de datos informática, y emplear una variedad de máquinas CNC combinadas para producirlo. La Fabricación Integrada por Computadora (CIM) aprovecha plenamente el potencial de esta tecnología al combinar una amplia gama de actividades asistidas por ordenador, que pueden incluir el control de existencias, el cálculo de costes de materiales y el control total de cada proceso de producción. Esto ofrece una mayor flexibilidad al fabricante, permitiendo a la empresa responder con mayor agilidad a las demandas del mercado y al desarrollo de nuevos productos.
La futura evolución incluirá la integración aún mayor de sistemas de realidad virtual, que permitirá a los diseñadores interactuar con los prototipos virtuales de los productos mediante la computadora, en lugar de tener que construir costosos modelos o simuladores para comprobar su viabilidad. También el área de prototipos rápidos es una evolución de las técnicas de CAD/CAM, en la que las imágenes informatizadas tridimensionales se convierten en modelos reales empleando equipos de fabricación especializada, como por ejemplo un sistema de estereolitografía.
También se emplean sistemas CAD/CAM que generan el programa de maquinado de forma automática. En el sistema CAD (diseño asistido por computadora) la pieza que se desea maquinar se diseña en la computadora con herramientas de dibujo y modelado sólido. Posteriormente el sistema CAM (manufactura asistida por computadora) toma la información del diseño y genera la ruta de corte que tiene que seguir la herramienta para fabricar la pieza deseada; a partir de esta ruta de corte se crea automáticamente el programa de maquinado, el cual puede ser introducido a la máquina mediante un disco o enviado electrónicamente.
CAE.
Bajo el nombre de ingeniería asistida por computador (Computer Aided Engineering) se agrupan habitualmente tópicos tales como los del CAD y la creación automatizada de dibujos y documentación. Es necesario pasar la geometría creada en el entorno CAD al sistema CAE. En el caso en que los dos sistemas no estén integrados, ello se lleva a término mediante la conversión a un formato común de intercambio de información gráfica.
Sin embargo, el concepto de CAE, asociado a la concepción de un producto y a las etapas de investigación y diseño previas a su fabricación, sobre todo cuando esta última es asistida o controlada mediante computador, se extiende cada vez más hasta incluir progresivamente a la propia fabricación. Podemos decir, por tanto, que la CAE es un proceso integrado que incluye todas las funciones de la ingeniería que van desde el diseño propiamente dicho hasta la fabricación.
Para realizar la ingeniería asistida por computador (CAE), se dispone de programas que permiten calcular cómo va a comportarse la pieza en la realidad, en aspectos tan diversos como deformaciones, resistencias, características térmicas, vibraciones, etc.
Mediante este método, por ejemplo, se podrá determinar qué grosor de material es necesario para resistir cargas de impacto especificadas en normas, o bien conservando un grosor, analizar el comportamiento de materiales con distinto límite de rotura. Otra aplicación importante de estos sistemas en el diseño de moldes es la simulación del llenado del molde a partir de unas dimensiones de éste dadas, y el análisis del gradiente de temperaturas durante el llenado del mismo.
5.- Clasifique los diferentes materiales que se utilizan en los procesos modernos de manufactura y describa los procesos de transformación que se pueden realizar en ellos.
R=
La mayoría de las materias primas minerales se obtienen de yacimientos, es decir, de lugares en los que la concentración del producto es lo suficientemente abundante como para hacer rentable su extracción. La distribución de los yacimientos es irregular y existen tantos tipos de yacimientos como de materias primas, por lo que reseñaremos sólo los más importantes:
Metales pesados: disponibles en toda la corteza terrestre. El hierro es el más importante (China).Metales preciosos: África del Sur (oro).
Madera: bosques australes (Canadá y Rusia) y tropicales (Brasil).
Gas natural: África del Norte, América del Norte, Asia central.
Petróleo: Golfo Pérsico, Caribe, mar Caspio, Indonesia.
Carbón: África del Sur, Europa y Asia centrales, América del Norte.
Uranio: América del Norte, Australia, África del Sur.
Fuentes de energía
La energía es el segundo componente fundamental de los procesos de producción. Puede obtenerse de muchas maneras, aunque en la actualidad la energía se produce fundamentalmente por medio de la quema de combustibles. Entre las energías de mayor empleo destacan las siguientes:
Combustibles fósiles: petróleo, carbón, gas y, en menor medida, madera. Se utilizan en motores, calefacciones y en la producción de electricidad (termoelectricidad).
Nuclear: obtenida por fisión del átomo. Su uso principal es la producción de electricidad. Hidráulica: aprovecha la fuerza de las corrientes de agua. Se utilizó tradicionalmente para mover molinos. Hoy en día sirve para generar electricidad (hidroelectricidad).Energías renovables
El principal inconveniente de las energías descritas anteriormente es que resultan caras y agreden al medio ambiente, además dependen de recursos que pueden agotarse. Como solución, existen varias fuentes alternativas de energía no contaminantes, y renovables, es decir, que no se agotan. Entre ellas cabe citar:
Energía solar.
Energía eólica (del viento).
Energía maremotriz.
Energía geotérmica, basada en el calor de las capas profundas del subsuelo.
Polietileno Se le llama con las siglas PE. Existen fundamentalmente tres tipos de polietileno. PE de Alta Densidad: Es un polímero obtenido del etileno en cadenas con moléculas bastantes juntas. Es un plástico incoloro, inodoro, no toxico, fuerte y resistente a golpes y productos químicos.
Su temperatura de ablandamiento es de 120º C. Se utiliza para fabricar envases de distintos tipos de fontanería, tuberías flexibles, prendas textiles, contenedores de basura, papeles, etc... Todos ellos son productos de gran resistencia y no atacables por los agentes químicos. PE de Mediana Densidad: Se emplea en la fabricación de tuberías subterráneas de gas natural los cuales son fáciles de identificar por su color amarillo. PE de Baja Densidad: Es un polímero con cadenas de moléculas menos ligadas y más dispersas. Es un plástico incoloro, inodoro, no toxico, más blando y flexible que el de alta densidad.
Madera La madera es un material ortotrópico encontrado como principal contenido del tronco de un árbol. Los árboles se caracterizan por tener troncos que crecen cada año y que están compuestos por fibras de celulosa unidas con lignina. Las plantas que no producen madera son conocidas como herbáceas.
Como la madera la producen y utilizan las plantas con fines estructurales es un material muy resistente y gracias a esta característica y a su abundancia natural es utilizada ampliamente por los humanos, ya desde tiempos muy remotos. Una vez cortada y seca, la madera se utiliza para muy diferentes aplicaciones. Una de ellas es la fabricación de pulpa o pasta, materia prima para hacer papel. Artistas y carpinteros tallan y unen trozos de madera con herramientas especiales, para fines prácticos o artísticos. La madera es también un material de construcción muy importante desde los comienzos de las construcciones humanas y continúa siéndolo hoy.
6.- Describa 5 equipos de manufactura que se utilizan actualmente en las empresas de clase mundial que permiten elevar la producción y calidad de las mismas.
R=
Torneado :Torno .- El
torno es una maquina, la cual suministra la
potencia para tornear la parte a una
velocidad de rotación determinada con avance de la herramienta y profundidad de corte especificadoTaladrado:Taladro prensa: Hay disponibles varias herramientas de corte para hacer agujeros, pero la broca helicoidal es con mucho la más común. Sus diámetros fluctúan desde 0.006 pulg. Hasta brocas tan grandes como 3.0 pulg. Las brocas helicoidales se usan ampliamente en la industria para producir agujeros en forma rápida y económica.AserradoSegueta: El corte de segueta involucra un
movimiento lineal de vaivén de la segueta contra
el trabajo. El Aserrado con cinta implica un
movimiento lineal continuo que utiliza una sierra cienta hecha de foma de banda flexible sin fin con dientes en una de sus bordes. La sierra circular usa una sierra circular giratoria para suministrar el movimiento continuo de la herramienta frente al trabajo.
Rectificado:Rectificadora .- El movimiento del equipo es una combinación de rotación y oscilación lineal, regulada de tal manera que un punto dado de la barra abrasiva, no repite la misma trayectoria
Fresado:Fresadora.-La clasificación de los cortadores para fresadoras o fresas como se les conoce comúnmente, está muy asociada con las operaciones de fresado que acabamos de describir.